Stabilization of an interconnected system of Schrödinger and wave equations with boundary coupling
نویسندگان
چکیده
In this paper, we consider the Schrödinger equation coupled by interface with a wave and boundary damping. The dissipation is acting on through Neumann condition. We formulate system as an abstract evolution in appropriate Hilbert space use linear semigroup theory to show well-posedness of system. Then under some assumptions geometry spatial domain, prove exponential stability solution. proof result based frequency domain approach which consists verifying that imaginary axis included resolvent set analyzing behavior operator axis. analysis carried out combining contradiction argument multipliers technique. This extends Theorem 3.2 [13] multimensional domains.
منابع مشابه
Boundary Stabilization of a Compactly System of Wave Equations
We obtain decay estimates of the energy of solutions to a compactly system of wave equations with a nonlinear boundary dissipation which is weak asut tends to infinity. AMS Subject Classification: Primary 35B45; Secondary 35 L70; 90A20.
متن کاملStabilization of Coupled Schrödinger and Heat Equations with Boundary Coupling
Abstract: We study stability of a Schrödinger equation with a collocated boundary feedback compensator in the form of a heat equation with a collocated input/output pair. We show that the spectrum of the closed-loop system consists only of two branches along two parabolas which are asymptotically symmetric relative to the line Reλ = −Imλ (the 135 line in the second quadrant). The asymptotic exp...
متن کاملFeedback boundary stabilization of wave equations with interior delay
In this paper we consider a boundary stabilization problem for the wave equation with interior delay. We prove an exponential stability result under some Lions geometric condition. The proof of the main result is based on an identity with multipliers that allows to obtain a uniform decay estimate for a suitable Lyapunov functional. Mathematics Subject Classification (2000): 35B05, 93D15, 93D20
متن کاملStability of an Interconnected System of Euler−bernoulli Beam and Heat Equation with Boundary Coupling
We study the stability of an interconnected system of Euler−Bernoulli beam and heat equation with boundary coupling, where the boundary temperature of the heat equation is fed as the boundary moment of the Euler−Bernoulli beam and, in turn, the boundary angular velocity of the Euler−Bernoulli beam is fed into the boundary heat flux of the heat equation. We show that the spectrum of the closed-l...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Evolution Equations and Control Theory
سال: 2023
ISSN: ['2163-2472', '2163-2480']
DOI: https://doi.org/10.3934/eect.2023022